
6/18/01 P.Murat, FNAL 1

• Introduction into the problem
• motivations 
- Describing detector geometries
- status
- milestones

Outline

Or why beat a dead horse



6/18/01 P.Murat, FNAL 2

• How to 
– Describe detector geometry in the reconstruction 

code 
• Such that 

– The same geometry initialization code would be used 
in the MC code

– The reconstruction code would not depend on the 
MC engine (GEANTx or any other) used by the 
detector simulation code

• Need to develop appropriate 
language for describing the 
geometry

• A non-trivial simulation driver 
to test

Problem to solve:



6/18/01 P.Murat, FNAL 3

- design by committee: 
- decide how to do it, then try to 

implement and see whether it is 
possible at all

- design by the experts
- design the software system, 

implement it, give it to users 
and see what happens (hope 
for the best)

- design by the [unhappy] user 
- Do it for yourself and make 

sure it works for you
- see if what you did  can be 

used by the others
- if yes, share your code with 

the others

Motivations

(2 cent contribution to the 
discussion about software design)



6/18/01 P.Murat, FNAL 4

- when writing C++ code it is especially 
important to use proper English

- (T)DetectorElement: a simplest part of the 
detector of interest for the geometry description, I.e. 
silicon ladder or scintillation counter

- Knows about its dimensions, position, mother volume 
(in the geometry hierarchy)

- (T)Subdetector : same as 
DetectorElement, but may have internal 
structure – daughters - ( muon subsystem) 

Geometry declaration: vocabulary



6/18/01 P.Murat, FNAL 5

Geometry declaration: procedure

-Geometry Manager: provides a set of declaration functions:

virtual int TGeometryManager::DeclareMaterial(TMaterial*)
virtual int TGeometryManager::DeclareRotation(TRotation*)
virtual int TGeometryManager::CreateShape(…)
virtual int TGeometryManager::CreateVolume(TVolume* v)

-Key part: Subdetectors declare their geometry to the 
geometry manager

TDetectorElement::DeclareGeometry(TGeometryManager* )

Subdetectors are also responsible for explicit calling 
geometry declaration routines of their daughters



6/18/01 P.Murat, FNAL 6

How it works 

•Subdetector tree: explicit (description 
of the CDF detector, for example)
•Volume tree: generic description of the 
detector geometry (volumes, materials, 
tracking media etc)



6/18/01 P.Murat, FNAL 7

Geometry declaration: 
including the simulation

-all the interaction between the [experiment-specific] geometry 
initialization code and the geometry management system goes 
through the interaction between 2 classes: GeometryManager
and the DetectorElement
•simulation geometry manager  inherits from the base geometry 
manager class and overloads its virtual declaration methods
•Pass the simulation geometry manager to the top node of the 
subdetector tree instead of the base class:

Top->DeclareGeometry(TGeometryManager*)



6/18/01 P.Murat, FNAL 8

Geometry declaration: what is implemented

-generic shape, generic volume (extend TShape/TVolume to 
add what is necessary for the MC needs) 
-Several shapes (what was needed to describe pieces of 
the CDF detector) implemented: box, tube, trapezoidal
-Supported:

-Volume sub-tree copies
-Volume divisions
-Bolean operations (define the new shape)
-Support for overlapping volumes: to come 

-Generic class for the geometry manager 
-Generic class for visualization manager



6/18/01 P.Murat, FNAL 9

- First rule of the “design by the user”: make sure that  
it works for you



6/18/01 P.Murat, FNAL 10

While you eat, your appetite grows up

•Geometry initialization scheme works well 
for the reconstruction code
•To make a real test with the simulation 
need a real simulation driver
•GEANT3 was a 1st widely used in HEP 
simulation/reconstruction/analysis 
environment – has all the hooks
•It is by far the best understood general 
purpose MC code
•Including all its limitations and problems

•Why not to start from Geant3?



6/18/01 P.Murat, FNAL 11

Geometry manager for GEANT3

•Implement TGeant3GeometryManager 
(inherits from TGeometryManager)
•Play with THigz class (a C++ wrapper around 
HIGZ by Rene), make it inheriting from generic 
visualization manager (GEANT3-specific implementation)
•Pass TGeant3GeometryManager to the code initializing 
CDF geometry:



6/18/01 P.Murat, FNAL 12

So the appetite grows up …

And 
grows 
up …



6/18/01 P.Murat, FNAL 13

• Monolithic:
– Cross-dependencies between the sub-packages
– explicit knowledge of the format of ZEBRA structures is 

assumed in many places
• ZEBRA: 32 bit-long representation of 

floating point numbers 
• FORTRAN inheritance: needs all of 

the CERNLIB
• Physics: far from the best (Atlas note 

PHYS-no-086)
– Hadronic interactions: last standalone version of FLUKA 

does much better job than GFLUKA
– EM processes: thin gas layers

How dead is the horse?



6/18/01 P.Murat, FNAL 14

What would a user  really like to 
have implemented?

• floating point numbers storage in double 
precision (get rid of ZEBRA)

• Split GEANT3 code into pieces by 
functionality (separate physics process 
management from geometry)

• Migrate to C++
• Implement ROOT/CINT-based interactive 

interface (analysis environment)
• Work on improving the physics – w/o (1) 

and (2) it is not very likely to happen

• Many experiments (ALICE, CDF, STAR,
Hera-B, Phobos, D0 and ,I believe, the 
others) put C++ interface on top of 
GEANT3 

• This allowed to continue using GEANT3
• Didn’t solve the major problems



6/18/01 P.Murat, FNAL 15

Split GEANT3 code into the modules
Done Jan’2001

// load shared libraries needed to run TGEANT
void start() {

gSystem->Load("AliRoot/lib/tgt_Linux/libminicern.so");
gSystem->Load("lib/$BFARCH/libgeant321_utils.so"); 
gSystem->Load("lib/$BFARCH/libgeant321_ggeom.so"); 
gSystem->Load("lib/$BFARCH/libgeant321_gheisha.so"); 
gSystem->Load("lib/$BFARCH/libgeant321_gcons.so");  
gSystem->Load("lib/$BFARCH/libgeant321_gphys.so"); 
gSystem->Load("lib/$BFARCH/libgeant321_gtrak.so"); 
gSystem->Load("lib/$BFARCH/libgeant321_gbase.so"); 

// will work in interactive mode...

gSystem->Load("lib/$BFARCH/libgeant321_gdraw.so");
//-----------------------------------------------------------------------------

•Modularity achieved at the level of algorithms
•But not at the level of the data structures



6/18/01 P.Murat, FNAL 16

Implementation of the managers: “semi-abstract” interface, 
base classes provide minimal default implementation

Interactive ROOT prompt

TGeant

Tracking manager

Physics process 
manager

Geometry  managerGeometry  manager

Visualization manager

Random number
manager

Steps: Implement C++ interfaces 
between the (still FORTRAN)  modules



6/18/01 P.Murat, FNAL 17

• Replace  ZEBRA structures one 
by one with the ROOT-based 
code providing the same 
functionality

• In theory: can transition from all 
FORTRAN to all C++
adiabatically 

• In practice: can make it up to a 
certain point

• Pretty soon realize that to make 
the next step, need to take 
everything apart first



6/18/01 P.Murat, FNAL 18

Where the project stands

70

30

10

90

50

50

20

80

70

30

0

10

20

30

40

50

60

70

80

90

100

geometry physics tracking global
initialization

mc input



6/18/01 P.Murat, FNAL 19

Where the project goes:

•First big milestone: fall’01
•Pieces brought back together
•functionality of GEANT 3.21 restored
•Management code migrated to C++
•No ZEBRA
•FORTRAN still used (to simulate physics 
processes, for example)
• start validation and timing tests



6/18/01 P.Murat, FNAL 20

- Logically shouldn’t need dictionaries 
for autodoc generation

- Same class described in several 
source files: still want to be able to 
generate documentation

- Way of documenting inline functions

Wish list: documentation


